Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163780

RESUMO

Dipeptidyl peptides III (DPP III) is a dual-domain zinc exopeptidase that hydrolyzes peptides of varying sequence and size. Despite attempts to elucidate and narrow down the broad substrate-specificity of DPP III, there is no explanation as to why some of them, such as tynorphin (VVYPW), the truncated form of the endogenous heptapeptide spinorphin, are the slow-reacting substrates of DPP III compared to others, such as Leu-enkephalin. Using quantum molecular mechanics calculations followed by various molecular dynamics techniques, we describe for the first time the entire catalytic cycle of human DPP III, providing theoretical insight into the inhibitory mechanism of tynorphin. The chemical step of peptide bond hydrolysis and the substrate binding to the active site of the enzyme and release of the product were described for DPP III in complex with tynorphin and Leu-enkephalin and their products. We found that tynorphin is cleaved by the same reaction mechanism determined for Leu-enkephalin. More importantly, we showed that the product stabilization and regeneration of the enzyme, but not the nucleophilic attack of the catalytic water molecule and inversion at the nitrogen atom of the cleavable peptide bond, correspond to the rate-determining steps of the overall catalytic cycle of the enzyme.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Encefalina Leucina/química , Oligopeptídeos/química , Domínio Catalítico , Encefalina Leucina/farmacologia , Humanos , Hidrólise , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Oligopeptídeos/farmacologia , Domínios Proteicos , Teoria Quântica
2.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770898

RESUMO

Human dipeptidyl-peptidase III (hDPP III) is capable of specifically cleaving dipeptides from the N-terminal of small peptides with biological activity such as angiotensin II (Ang II, DRVYIHPF), and participates in blood pressure regulation, pain modulation, and the development of cancers in human biological activities. In this study, 500 ns molecular dynamics simulations were performed on free-hDPP III (PDB code: 5E33), hDPP III-Ang II (PDB code: 5E2Q), and hDPP III-IVYPW (PDB code: 5E3C) to explore how these two peptides affect the catalytic efficiency of enzymes in terms of the binding mode and the conformational changes. Our results indicate that in the case of the hDPP III-Ang II complex, subsite S1 became small and hydrophobic, which might be propitious for the nucleophile to attack the substrate. The structures of the most stable conformations of the three systems revealed that Arg421-Lys423 could form an α-helix with the presence of Ang II, but only part of the α-helix was produced in hDPP III-IVYPW. As the hinge structure in hDPP III, the conformational changes that took place in the Arg421-Lys423 residue could lead to the changes in the shape and space of the catalytic subsites, which might allow water to function as a nucleophile to attack the substrate. Our results may provide new clues to enable the design of new inhibitors for hDPP III in the future.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sítios de Ligação , Catálise , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Nature ; 599(7883): 158-164, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34552243

RESUMO

Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary ß-subunits-intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)-to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1-5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2-DPP6S-KChIP1 dodecamer complex, the Kv4.2-KChIP1 and Kv4.2-DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2-KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1-S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2-KChIP1-DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Canais de Potássio Shal/química , Canais de Potássio Shal/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Feminino , Humanos , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/metabolismo , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Ligação Proteica , Canais de Potássio Shal/genética , Xenopus laevis
4.
Sci Rep ; 11(1): 7929, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846449

RESUMO

The emergence of drug-resistant bacteria has become a major problem worldwide. Bacterial dipeptidyl peptidases 7 and 11 (DPP7s and DPP11s), belonging to the family-S46 peptidases, are important enzymes for bacterial growth and are not present in mammals. Therefore, specific inhibitors for these peptidases are promising as potential antibiotics. While the molecular mechanisms underlining strict specificity at the S1 subsite of S46 peptidases have been well studied, those of relatively broad preference at the S2 subsite of these peptidases are unknown. In this study, we performed structural and biochemical analyses on DPP7 from Stenotrophomonas maltophilia (SmDPP7). SmDPP7 showed preference for the accommodation of hydrophobic amino acids at the S2 subsite in general, but as an exception, also for asparagine, a hydrophilic amino acid. Structural analyses of SmDPP7 revealed that this exceptional preference to asparagine is caused by a hydrogen bonding network at the bottom of the S2 subsite. The residues in the S2 subsite are well conserved among S46 peptidases as compared with those in the S1 subsite. We expect that our findings will contribute toward the development of a universal inhibitor of S46 peptidases.


Assuntos
Asparagina/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Stenotrophomonas maltophilia/enzimologia , Sequência de Aminoácidos , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Termodinâmica
5.
Nature ; 592(7856): 773-777, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731929

RESUMO

Nucleotide-binding domain, leucine-rich repeat receptors (NLRs) mediate innate immunity by forming inflammasomes. Activation of the NLR protein NLRP1 requires autocleavage within its function-to-find domain (FIIND)1-7. In resting cells, the dipeptidyl peptidases DPP8 and DPP9 interact with the FIIND of NLRP1 and suppress spontaneous NLRP1 activation8,9; however, the mechanisms through which this occurs remain unknown. Here we present structural and biochemical evidence that full-length rat NLRP1 (rNLRP1) and rat DPP9 (rDPP9) form a 2:1 complex that contains an autoinhibited rNLRP1 molecule and an active UPA-CARD fragment of rNLRP1. The ZU5 domain is required not only for autoinhibition of rNLRP1 but also for assembly of the 2:1 complex. Formation of the complex prevents UPA-mediated higher-order oligomerization of UPA-CARD fragments and strengthens ZU5-mediated NLRP1 autoinhibition. Structure-guided biochemical and functional assays show that both NLRP1 binding and enzymatic activity are required for DPP9 to suppress NLRP1 in human cells. Together, our data reveal the mechanism of DPP9-mediated inhibition of NLRP1 and shed light on the activation of the NLRP1 inflammasome.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Proteínas NLR/química , Animais , Proteínas Adaptadoras de Sinalização CARD , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos
6.
Nature ; 592(7856): 778-783, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731932

RESUMO

Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 1 (NLRP1) is an inflammasome sensor that mediates the activation of caspase-1 to induce cytokine maturation and pyroptosis1-4. Gain-of-function mutations of NLRP1 cause severe inflammatory diseases of the skin4-6. NLRP1 contains a function-to-find domain that auto-proteolyses into noncovalently associated subdomains7-9, and proteasomal degradation of the repressive N-terminal fragment of NLRP1 releases its inflammatory C-terminal fragment (NLRP1 CT)10,11. Cytosolic dipeptidyl peptidases 8 and 9 (hereafter, DPP8/DPP9) both interact with NLRP1, and small-molecule inhibitors of DPP8/DPP9 activate NLRP1 by mechanisms that are currently unclear10,12-14. Here we report cryo-electron microscopy structures of the human NLRP1-DPP9 complex alone and with Val-boroPro (VbP), an inhibitor of DPP8/DPP9. The structures reveal a ternary complex that comprises DPP9, full-length NLRP1 and the NLRPT CT. The binding of the NLRP1 CT to DPP9 requires full-length NLRP1, which suggests that NLRP1 activation is regulated by the ratio of NLRP1 CT to full-length NLRP1. Activation of the inflammasome by ectopic expression of the NLRP1 CT is consistently rescued by co-expression of autoproteolysis-deficient full-length NLRP1. The N terminus of the NLRP1 CT inserts into the DPP9 active site, and VbP disrupts this interaction. Thus, VbP weakens the NLRP1-DPP9 interaction and accelerates degradation of the N-terminal fragment10 to induce inflammasome activation. Overall, these data demonstrate that DPP9 quenches low levels of NLRP1 CT and thus serves as a checkpoint for activation of the NLRP1 inflammasome.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Domínio Catalítico , Microscopia Crioeletrônica , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Células HEK293 , Humanos , Proteínas NLR/química , Estrutura Terciária de Proteína
7.
Biochem J ; 477(3): 727-745, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31957806

RESUMO

Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurodegenerative lysosomal storage disorder caused by mutations in the gene encoding the protease tripeptidyl-peptidase 1 (TPP1). Progression of LINCL can be slowed or halted by enzyme replacement therapy, where recombinant human TPP1 is administered to patients. In this study, we utilized protein engineering techniques to increase the stability of recombinant TPP1 with the rationale that this may lengthen its lysosomal half-life, potentially increasing the potency of the therapeutic protein. Utilizing multiple structure-based methods that have been shown to increase the stability of other proteins, we have generated and evaluated over 70 TPP1 variants. The most effective mutation, R465G, increased the melting temperature of TPP1 from 55.6°C to 64.4°C and increased its enzymatic half-life at 60°C from 5.4 min to 21.9 min. However, the intracellular half-life of R465G and all other variants tested in cultured LINCL patient-derived lymphoblasts was similar to that of WT TPP1. These results provide structure/function insights into TPP1 and indicate that improving in vitro thermal stability alone is insufficient to generate TPP1 variants with improved physiological stability. This conclusion is supported by a proteome-wide analysis that indicates that lysosomal proteins have higher melting temperatures but also higher turnover rates than proteins of other organelles. These results have implications for similar efforts where protein engineering approaches, which are frequently evaluated in vitro, may be considered for improving the physiological properties of proteins, particularly those that function in the lysosomal environment.


Assuntos
Aminopeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Lipofuscinoses Ceroides Neuronais , Proteínas , Serina Proteases , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Aminopeptidases/metabolismo , Animais , Células CHO , Clonagem Molecular , Cricetulus , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/isolamento & purificação , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Endopeptidases/metabolismo , Terapia de Reposição de Enzimas , Estabilidade Enzimática , Humanos , Linfócitos , Mutação , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Cultura Primária de Células , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , Proteínas/metabolismo , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Tripeptidil-Peptidase 1
8.
Cell Mol Life Sci ; 77(1): 61-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31728577

RESUMO

Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.


Assuntos
Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Aminopeptidases/química , Aminopeptidases/metabolismo , Animais , Cromossomos/química , Cromossomos/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Serina Proteases/química , Serina Proteases/metabolismo , Complexo Shelterina , Telomerase/química , Telômero/química , Proteínas de Ligação a Telômeros/química
9.
Sci Rep ; 9(1): 13587, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537874

RESUMO

Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.


Assuntos
Benzoatos/farmacologia , Ácido Cítrico/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Porphyromonas gingivalis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzoatos/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Fosfatos de Inositol , Modelos Moleculares , Conformação Proteica
10.
J Chem Inf Model ; 59(8): 3437-3453, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31274304

RESUMO

The main aim of this work was to find parameters for the zinc ion in human dipeptidyl peptidase III (DPP III) active site that would enable its reliable modeling. Since the parameters publicly available failed to reproduce the zinc ion coordination in the enzyme, we developed a new set of the hybrid bonded/nonbonded parameters for the zinc ion suitable for molecular modeling of the human DPP III, dynamics, and ligand binding. The parameters allowed exchange of the water molecules coordinating the zinc ion and proved to be robust enough to enable reliable modeling not only of human DPP III and its orthologues but also of the other zinc-dependent peptidases with the zinc ion coordination similar to that in dipeptidyl peptidases III, i.e., peptidases with the zinc ion coordinated with two histidines and one glutamate. The new parameters were tested on a set of 21 different systems comprising 8 different peptidases, 5 DPP III orthologues, thermolysin, neprilysin, and aminopeptidase N, and the results are summarized in the second part of the article.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Zinco/metabolismo , Humanos , Imidazóis/química , Conformação Proteica , Prótons
11.
Hum Mutat ; 40(11): 1924-1938, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283065

RESUMO

Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive condition caused by variants in the TPP1 gene, leading to deficient activity of the lysosomal enzyme tripeptidyl peptidase I (TPP1). We update on the spectrum of TPP1 variants associated with CLN2 disease, comprising 131 unique variants from 389 individuals (717 alleles) collected from the literature review, public databases, and laboratory communications. Previously unrecorded individuals were added to the UCL TPP1-specific database. Two known pathogenic variants, c.509-1 G>C and c.622 C>T (p.(Arg208*)), collectively occur in 60% of affected individuals in the sample, and account for 50% of disease-associated alleles. At least 86 variants (66%) are private to single families. Homozygosity occurs in 45% of individuals where both alleles are known (87% of reported individuals). Atypical CLN2 disease, TPP1 enzyme deficiency with disease onset and/or progression distinct from classic late-infantile CLN2, represents 13% of individuals recorded with associated phenotype. NCBI ClinVar currently holds records for 37% of variants collected here. Effective CLN2 disease management requires early diagnosis; however, irreversible neurodegeneration occurs before a diagnosis is typically reached at age 5. Timely classification and public reporting of TPP1 variants is essential as molecular testing increases in use as a first-line diagnostic test for pediatric-onset neurological disease.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Predisposição Genética para Doença , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Alelos , Aminopeptidases/química , Animais , Biomarcadores , Bases de Dados Genéticas , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Modelos Animais de Doenças , Estudos de Associação Genética , Genótipo , Humanos , Simulação de Dinâmica Molecular , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/metabolismo , Fenótipo , Conformação Proteica , Serina Proteases/química , Relação Estrutura-Atividade , Tripeptidil-Peptidase 1
12.
Biochimie ; 166: 27-37, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31108122

RESUMO

The huge exopeptidase, tripeptidyl-peptidase II (TPP II), appears to be involved in a large number of important biological processes. It is present in the cytosol of most eukaryotic cells, where it removes tripeptides from free amino termini of longer peptides through a 'molecular ruler mechanism'. Its main role appears to be general protein degradation, together with the proteasome. The activity is increased by stress, such as during starvation and muscle wasting, and in tumour cells. Overexpression of TPP II leads to accelerated cell growth, genetic instability and resistance to apoptosis, whereas inhibition or down-regulation of TPP II renders cells sensitive to apoptosis. Although it seems that humans can survive without TPP II, it is not without consequences. Recently, patients with loss-of-function mutations in the TPP2 gene have been identified. They suffer from autoimmunity leading to leukopenia and other consequences. Furthermore, a missense mutation in the TPP2 gene is associated with a sterile brain inflammation condition mimicking multiple sclerosis. This review will summarise what is known today regarding the activity and structure of this very large enzyme complex, and its potential function in various cellular processes. It is clear that more research is needed to identify natural substrates and/or interaction partners of TPP II, which can explain the observed effects in different cellular contexts.


Assuntos
Aminopeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Serina Endopeptidases , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/fisiologia , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Drosophila melanogaster , Humanos , Camundongos , Mutação , Proteólise , Ratos , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Especificidade por Substrato
13.
Proteins ; 87(5): 390-400, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681192

RESUMO

Aflatoxin oxidase (AFO), an enzyme isolated from Armillariella tabescens, has been reported to degrade aflatoxin B1 (AFB1). However, recent studies reported sequence and structure similarities with the dipeptidyl peptidase III (DPP III) family of enzymes and confirmed peptidase activity toward DPP III substrates. In light of these investigations, an extensive computational study was performed in order to improve understanding of the AFO functions. Steered MD simulations revealed long-range domain motions described as protein opening, characteristic for DPPs III and necessary for substrate binding. Newly identified open and partially open forms of the enzyme closely resemble those of the human DPP III orthologue. Docking of a synthetic DPP III substrate Arg2 -2-naphthylamide revealed a binding mode similar to the one found in crystal structures of human DPP III complexes with peptides with the S1 and S2 subsites' amino acid residues conserved. On the other hand, no energetically favorable AFB1 binding mode was detected, suggesting that aflatoxins are not good substrates of AFO. High plasticity of the zinc ion coordination sphere within the active site, consistent with that of up to date studied DPPs III, was observed as well. A detailed electrostatic analysis of the active site revealed a predominance of negatively charged regions, unsuitable for the binding of the neutral AFB1. The present study is in line with the most recent experimental study on this enzyme, both suggesting that AFO is a typical member of the DPP III family.


Assuntos
Aflatoxina B1/química , Oxirredutases do Álcool/química , Armillaria/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredutases/química , Peptídeo Hidrolases/química , Ligação Proteica , Conformação Proteica , Homologia Estrutural de Proteína
14.
J Dairy Sci ; 102(1): 113-123, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391182

RESUMO

This study addresses the hypothesis that the extracellular cell-associated X-prolyl dipeptidyl-peptidase activity initially described in Streptococcus thermophilus could be attributable to the intracellular X-prolyl dipeptidyl-peptidase PepX. For this purpose, a PepX-negative mutant of S. thermophilus LMD-9 was constructed by interrupting the pepX gene and named LMD-9-ΔpepX. When cultivated, the S. thermophilus LMD-9 wild type strain grew more rapidly than its ΔpepX mutant counterpart. Thus, the growth rate of the LMD-9-ΔpepX strain was reduced by a factor of 1.5 and 1.6 in milk and LM17 medium (M17 medium supplemented with 2% lactose), respectively. The negative effect of the PepX inactivation on the hydrolysis of ß-casomorphin-7 was also observed. Indeed, when incubated with this peptide, the LMD-9-ΔpepX mutant cells were unable to hydrolyze it, whereas this peptide was completely degraded by the S. thermophilus LMD-9 wild type cells. This hydrolysis was not due to leakage of intracellular PepX, as no peptide hydrolysis was highlighted in cell-free filtrate of wild type strain. Therefore, based on these results, it can be presumed that though lacking an export signal, the intracellular PepX might have accessed the ß-casomorphin-7 externally, perhaps via its galactose-binding domain-like fold, this domain being known to help enzymes bind to several proteins and substrates. Therefore, the identification of novel distinctive features of the proteolytic system of S. thermophilus will further enhance its credibility as a starter in milk fermentation.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Streptococcus thermophilus/enzimologia , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Endorfinas/metabolismo , Hidrólise , Leite/química , Leite/microbiologia , Fragmentos de Peptídeos/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Proteólise , Streptococcus thermophilus/genética , Streptococcus thermophilus/crescimento & desenvolvimento
15.
J Biomol Struct Dyn ; 37(14): 3596-3606, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198396

RESUMO

Human dipeptidyl peptidase III (hDPP III) is a zinc-exopeptidase of the family M49 involved in final steps of intracellular protein degradation and in cytoprotective pathway Keap1-Nrf2. Biochemical and structural properties of this enzyme have been extensively investigated, but the knowledge on its contacts with other proteins is scarce. Previously, polypeptide aprotinin was shown to be a competitive inhibitor of hDPP III hydrolytic activity. In this study, aprotinin was first investigated as a potential substrate of hDPP III, but no degradation products were demonstrated by MALDI-TOF mass spectrometry. Subsequently, molecular details of the protein-protein interaction between aprotinin and hDPP III were studied by molecular modeling. Docking and long molecular dynamics (MD) simulations have shown that aprotinin interacts by its canonical binding epitope with the substrate binding cleft of hDPP III. Thereby, free N-terminus of aprotinin is distant from the active-site zinc. Enzyme-inhibitor complex is stabilized by intermolecular hydrogen bonding network, electrostatic and hydrophobic interactions which mostly involve constituent amino acid residues of the hDPP III substrate binding subsites S1, S1', S2, S2' and S3'. This is the first study that gives insight into aprotinin binding to a metallopeptidase. Communicated by Ramaswamy H. Sarma.


Assuntos
Aprotinina/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Aminoácidos/química , Sítios de Ligação , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Solventes , Eletricidade Estática , Especificidade por Substrato , Zinco/metabolismo
16.
Bull Exp Biol Med ; 165(5): 629-634, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225711

RESUMO

Enzymatic hydrolysis of biopolymers of the cartilage tissue was studied for obtaining a complex of type II collagen peptides and glycosaminoglycan oligosaccharides. Hydrothermal hydrolysis in a high pressure homogenizer followed by enzymatic hydrolysis of the cartilage tissue biopolymers with proteolytic enzyme preparation Karipazim yielded a complex of collagen peptides and glycosaminoglycan oligosaccharides with molecular weights of 240-720 Da. Low molecular weight of the components increases their bioavailability. Entering into the cells (chondrocytes), low-molecular-weight peptides, disaccharides, and oligosaccharides as structural elements of the matrix can participate in the formation of fibrils of collagen and proteoglycans. Exogenous substances replenish deficient components of the matrix and/or their concentrations, affect the formation and strengthen the cartilage tissue. Thus, using cattle and porcine hyaline cartilages, we prepared a complex of biopolymers with lower molecular weights in comparison with previously developed nutraceuticals.


Assuntos
Colágeno Tipo II/química , Glicosaminoglicanos/química , Cartilagem Hialina/química , Peptídeos/química , Proteoglicanas/química , Aminopeptidases/química , Animais , Transporte Biológico , Bovinos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Quimopapaína/química , Dipeptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Glicosaminoglicanos/farmacologia , Hidrólise , Peso Molecular , Muramidase/química , Papaína/química , Peptídeos/farmacologia , Proteoglicanas/farmacologia , Suínos
17.
Anal Biochem ; 559: 11-16, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098994

RESUMO

Common assays for endoprotease activity of meprin α and ß are based on cleavage of internally quenched substrates. Although direct and convenient, for meprins these assays bear disadvantages such as, e.g., significant substrate inhibition or potential fluorescence quenching by compounds applied in inhibitor analysis. Here, we present a novel continuous assay by introducing an auxiliary enzyme, prolyl tripeptidyl aminopeptidase (PtP) and the chromogenic substrate KKGYVADAP-p-nitroanilide. We provide a quick strategy for expression and one-step-purification of the auxiliary enzyme. The enzyme kinetic data for meprin α and ß suggest hyperbolic v/S-characteristics, the kinetic parameters of substrate conversion by meprin ß were Km = 184 ±â€¯32 µM and kcat = 20 ±â€¯4 s-1. We also present conditions for the use of the fluorogenic substrate KKGYVADAP-AMC to assess meprin ß activity. The assays were applied for determination of inhibitory parameters of the natural inhibitor actinonin and two recently published hydroxamates. Hence, we present two novel methods, which can be applied to assess inhibitory mechanism and potency with the attractive current drug targets meprin α and ß. Furthermore, the assay might also provide implications for analysis of other endoproteases as well as their inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Metaloendopeptidases/análise , Porphyromonas gingivalis/enzimologia , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Relação Dose-Resposta a Droga , Ácidos Hidroxâmicos/farmacologia , Cinética , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Estrutura Molecular , Inibidores de Proteases/farmacologia , Serina Endopeptidases/química , Relação Estrutura-Atividade
19.
Mol Biol Rep ; 45(5): 973-986, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30039431

RESUMO

Pediococcus acidilactici is a probiotic lactic acid bacteria possessing studied in-vitro probiotic properties. Study of membrane proteins is crucial in developing technological and health applications of probiotic bacteria. Genome analysis of Pediococcus acidilactici revealed about more than 60 proteases/peptidases which need characterization. Dipeptidyl peptidase-III (DPP-III) is studied for first time in prokaryotes and it is a membrane protein in P. acidilactici that has been purified to apparent homogeneity. The enzyme was purified 81.66 fold with 36.75% yield. The specific activity of purified DPP-III was 202.67 U/mg. The protein moved as single band on native PAGE. The purity was also confirmed by in-situ gel assay. However SDS-PAGE analysis revealed it as high molecular weight heterotetramer with molecular weight of 108 kDa. The enzyme was maximally active at pH 8.5 and at 37 C. Purified DPP-III specifically hydrolyzed Arg-Arg-4-ßNA with micromolar affinity (Km = 9.0 µM) and none of studied endopeptidase and monopeptidase substrate was hydrolyzed. Inhibition study revealed purified DPP-III to be a serine protease with involvement of metal ion at active site. The significance of this enzyme as membrane protein is yet to be studied.


Assuntos
Membrana Celular/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Pediococcus acidilactici/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cinética , Peso Molecular , Pediococcus acidilactici/química , Probióticos , Multimerização Proteica
20.
PLoS One ; 13(2): e0192488, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420664

RESUMO

Dipeptidyl peptidase III (DPP III) isolated from the thermophilic bacteria Caldithrix abyssi (Ca) is a two-domain zinc exopeptidase, a member of the M49 family. Like other DPPs III, it cleaves dipeptides from the N-terminus of its substrates but differently from human, yeast and Bacteroides thetaiotaomicron (mesophile) orthologs, it has the pentapeptide zinc binding motif (HEISH) in the active site instead of the hexapeptide (HEXXGH). The aim of our study was to investigate structure, dynamics and activity of CaDPP III, as well as to find possible differences with already characterized DPPs III from mesophiles, especially B. thetaiotaomicron. The enzyme structure was determined by X-ray diffraction, while stability and flexibility were investigated using MD simulations. Using molecular modeling approach we determined the way of ligands binding into the enzyme active site and identified the possible reasons for the decreased substrate specificity compared to other DPPs III. The obtained results gave us possible explanation for higher stability, as well as higher temperature optimum of CaDPP III. The structural features explaining its altered substrate specificity are also given. The possible structural and catalytic significance of the HEISH motive, unique to CaDPP III, was studied computationally, comparing the results of long MD simulations of the wild type enzyme with those obtained for the HEISGH mutant. This study presents the first structural and biochemical characterization of DPP III from a thermophile.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA